

Cornell University

Air Pollution Social Cost Accounting with High Spatial, Sectoral, and Temporal Resolutions

Jinhyok Heo 1 , Peter J. Adams 2,3 , and H. Oliver Gao 1

¹School of Civil and Environmental Engineering, Cornell University ²Department of Civil and Environmental Engineering, Carnegie Mellon University ³Department of Engineering and Public Policy, Carnegie Mellon University

AAAR 34th Annual Conference

Minneapolis, MN / October 15, 2015

Current Methods of Identifying PM_{2.5} Sources

- Receptor Models: Chemical Mass Balance (CMB), Positive Matrix Factorization (PMF)
 imited spatial/sectoral/temporal resolutions
- Chemical Transport Models (CTMs): Brute-force method, Tagging method
 ⇒ computationally expensive

New: The Air Pollution Social Cost Accounting Model

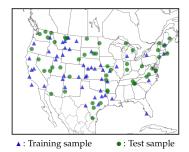
- quantifies sources of PM_{2.5} social costs and their contributions
 - \Rightarrow spatially resolved for the entire U.S. domain,
 - \Rightarrow temporally resolved for four seasons,
 - \Rightarrow sectorally resolved for emission inventory's resolution.

Social Cost of Emissions

Social Cost [\$] = ($\Delta PM_{2.5}$)

× (Concentration-Response Relation)

imes (Value of Statistical Life)


Social Cost of Emissions

Social Cost [\$] = ($\Delta PM_{2.5}$)

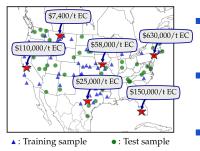
imes (Concentration-Response Relation)

imes (Value of Statistical Life)

The Estimating Air pollution Social Impact Using Regression (EASIUR) model

- 100 random locations
 - □ 50 for building model
 - 50 for out-of-sample test
- CTM generated a large dataset (~30 TB)
 - CAMx with tagging (PSAT)
 - 2005 emissions and meteorology
 - Regression derived parameterizations

Per-tonne Social Cost [\$/t] = f (Exposed Population, Atmospheric Variables)

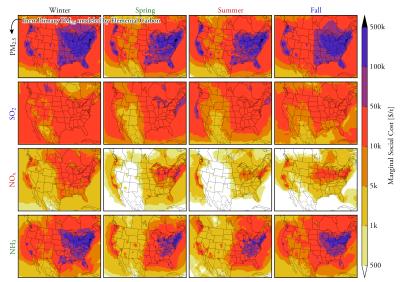

Social Cost of Emissions

Social Cost [\$] = ($\Delta PM_{2.5}$)

× (Concentration-Response Relation)

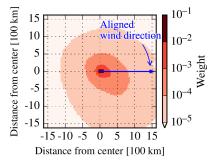
imes (Value of Statistical Life)

The Estimating Air pollution Social Impact Using Regression (EASIUR) model



100 random locations

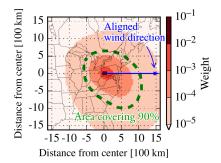
- □ 50 for building model
- □ 50 for out-of-sample test
- CTM generated a large dataset (~30 TB)
 - □ CAMx with tagging (PSAT)
 - 2005 emissions and meteorology
- Regression derived parameterizations


Per-tonne Social Cost [\$/t] = f (Exposed Population, Atmospheric Variables)

EASIUR's Marginal Social Costs [\$/t] at the Point of Emissions

This is for ground-level emissions. We have two more for 150 m and 300 m emission elevations.

Average Plumes for Quantifying Exposed Population


(a) EC Average Plume (Summer)

- averaged CTM results of 50 sample locations.
- normalized an average plume created from CTM results.

$$\sum_{x,y}$$
 Weight_{x,y} = 1.0

used to express exposed population in regression
Exposed Population = $\sum_{x,y}$ (Wind-Direction-Adjusted Weight_{x,y} × Population_{x,y})

Average Plumes for Quantifying Exposed Population

(a) EC Average Plume (Summer)

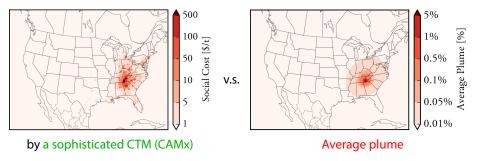
- averaged CTM results of 50 sample locations.
- normalized an average plume created from CTM results.

$$\sum_{x,y}$$
 Weight_{x,y} = 1.0

used to express exposed population in regression
Exposed Population = $\sum_{x,y}$ (Wind-Direction-Adjusted Weight_{x,y} × Population_{x,y})

Average Plumes for Quantifying Exposed Population

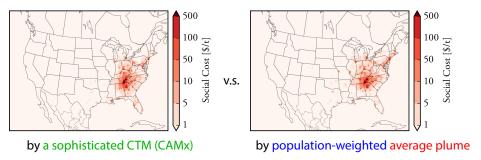
- averaged CTM results of 50 sample locations.
- normalized an average plume created from CTM results.


$$\sum_{x,y}$$
 Weight_{x,y} = 1.0

used to express exposed population in regression
Exposed Population = $\sum_{x,y}$ (Wind-Direction-Adjusted Weight_{x,y} × Population_{x,y})

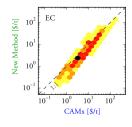
New: The Air Pollution Social Cost Accounting Model

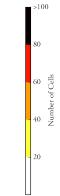
Key idea: spatially distribute EASIUR's social costs with population-weighted average plumes.


Social costs originated from EC at one out-of-sample location (Chattanooga, TN):

New: The Air Pollution Social Cost Accounting Model

Key idea: spatially distribute EASIUR's social costs with population-weighted average plumes.

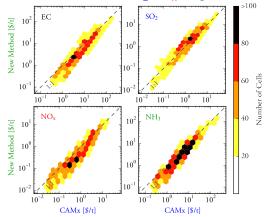

Social costs originated from EC at one out-of-sample location (Chattanooga, TN):



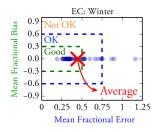
Evaluation: CTM v.s. New Method

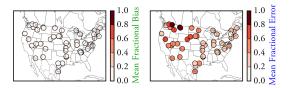
Key idea: spatially distribute EASIUR's social costs with population-weighted average plumes.

Social costs originated from EC at one out-of-sample location (Chattanooga, TN):

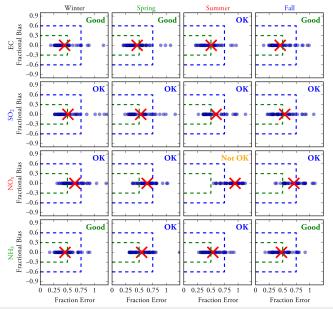


Evaluation: CTM v.s. New Method


Key idea: spatially distribute EASIUR's social costs with population-weighted average plumes.

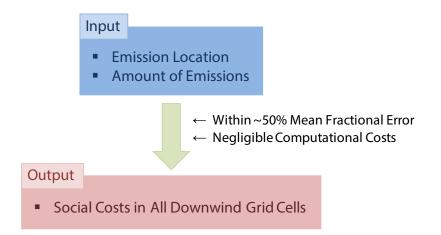

Social costs originated from EC, SO₂, NO_x, NH₃ at Chattanooga, TN:

Evaluation: Winter EC at 50 out-of-sample locations


- Common evaluation metric for air quality models (Boylan and Russel, 2006)
 - Mean Fractional Bias
 - Mean Fractional Error

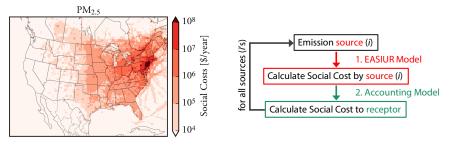
- Zero Mean Fractional Bias:
 - \Rightarrow Because all social costs are distributed.
- Small Mean Fractional Errors in densely-populated areas:
 - \Rightarrow Performance will be better for important areas.

Works well for All Species and All Seasons!

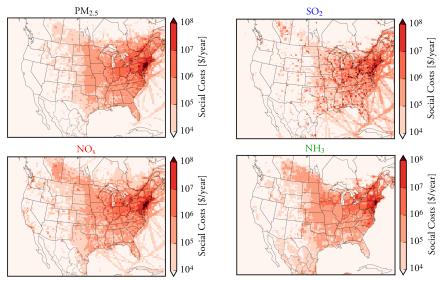


 \Rightarrow Mostly Good or OK

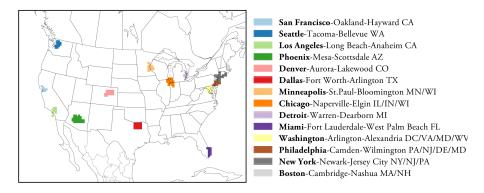
⇒ Better in real applications (for areas with large emissions and large population)

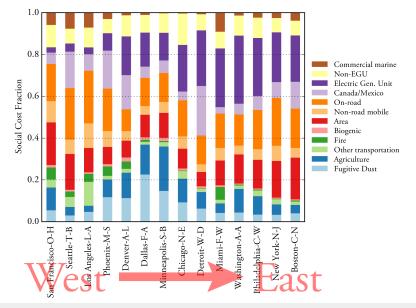

Introduction Method Application Conclusions

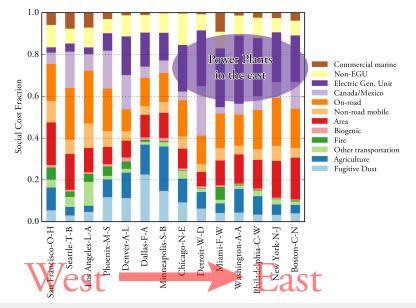
The Air Pollution Social Cost Accounting Model

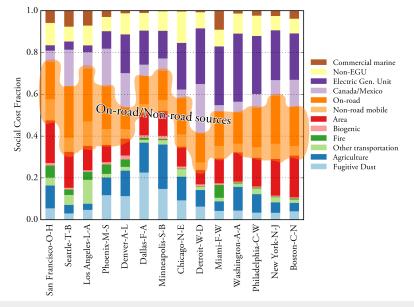

Emission Sources responsible for

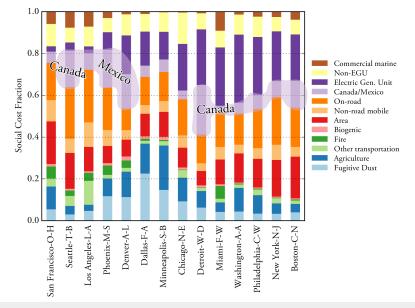
Air Quality Social Cost in the New York Metropolitan Area

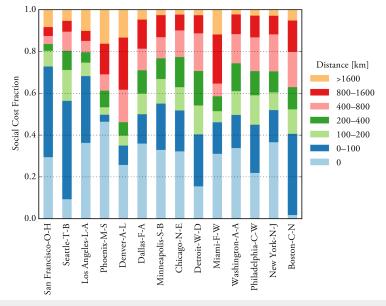

Emission Sources responsible for


Air Quality Social Cost in the New York Metropolitan Area

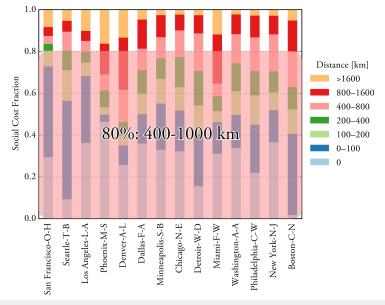



Introduction Method Application Conclusions


Application: 14 Metropolitan Areas






14 Metropolitan Areas: Social Cost Fractions by Source Distance

14 Metropolitan Areas: Social Cost Fractions by Source Distance

14 Metropolitan Areas: Social Cost Fractions by Source Distance

Conclusions

- The Air Pollution Social Cost Accounting Model identifies the sources of air quality burden at a receptor location with high spatial, sectoral, and temporal resolutions.
- The most comprehensive accounting of air pollution social costs is produced.
- The new model provides useful information for policy strategies from a receptor's point of view.

Future Plans

- Evaluate the current practices of State Implementation Plans.
- Develop a method for designing optimal air quality and energy policies.

Acknowledgments

- This work was supported by the Lloyd's Register Foundation and the New York Metropolitan Transportation Council (NYMTC).
- Center for Atmospheric Particle Studies (CAPS), Carnegie Mellon Univ.
- Center for Climate and Energy Decision Making (CEDM), Carnegie Mellon Univ.
- Bonyoung Koo (ENVIRON), Cheol-Heon Jeong (Univ. of Toronto)

Cornell University

Thanks! Any Questions?

Air Pollution Social Cost Accounting with High Spatial, Sectoral, and Temporal Resolutions

Jinhyok Heo¹, Peter J. Adams^{2,3}, and H. Oliver Gao¹

¹School of Civil and Environmental Engineering, Cornell University ²Department of Civil and Environmental Engineering, Carnegie Mellon University ³Department of Engineering and Public Policy, Carnegie Mellon University

AAAR 34th Annual Conference

Minneapolis, MN / October 15, 2015

Introduction Method Application Conclusions